Imitation of human motion achieves natural head movements for
humanoid robots in an active-speaker detection task
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Abstract— Head movements are crucial for social human-
human interaction. They can transmit important cues (e.g.,
joint attention, speaker detection) that cannot be achieved
with verbal interaction alone. This advantage also holds for
human-robot interaction. Even though modeling human mo-
tions through generative AI models has become an active
research area within robotics in recent years, the use of
these methods for producing head movements in human-robot
interaction remains underexplored. In this work, we employed a
generative Al pipeline to produce human-like head movements
for a Nao humanoid robot. In addition, we tested the system on
a real-time active-speaker tracking task in a group conversation
setting. Overall, the results show that the Nao robot successfully
imitates human head movements in a natural manner while ac-
tively tracking the speakers during the conversation. Code and
data from this study are available at https://github.com/
dingdingding60/Humanoids2024-HeadImitation.

I. INTRODUCTION

Head movements are important to generate nonverbal cues
that enhance human-human interactions. For example, a
student and teacher can construct joint attention by using
head movements or a child can attend a speaker in group
conversation to maintain a social interaction. Given the sig-
nificance of head movement in group interaction, studies on
human-robot interaction have also attempted to model natural
head movements in interactive robots [1]. However, work on
human-like motion generation for robots, particularly in real-
time motion generation settings, remains less-explored.

Although modeling human (or animal) motion has been
extensively explored in generative artificial intelligence, stud-
ies have so far been mostly limited to applications that in-
volve locomotion, manipulation, and robot-robot interaction
(e.g., playing soccer) [2], [3], [4], [5], [6], [7]. Here, we adopt
a generative modeling approach to imitate head movement
of humans by using a Nao humanoid robot in a human-robot
interaction (HRI) scenario. To be concrete, we formulate the
following research question: How can we produce human-
like head movements via generative modeling on a humanoid
robot tasked to detect and track active speakers in an HRI
setting?

To answer this question, we designed HRI experiments in
which a Nao humanoid robot participates group interaction
to recognize active speakers. In this setting, the Nao robot
generates head movement trajectories through a variational
autoencoder (VAE), to reproduce motion similar to human
demonstrations. The robot then passively participates in
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conversation with human partners by paying attention to the
active speaker. We note that like most of the robots (e.g.,
Pepper) used in HRI studies, our robot can only move its
head along the in yaw and pitch directions. Despite this
limitation, we found that it is possible to match the corre-
sponding human head movements, achieving natural-looking
motion during the task. Moreover, we significantly improved
the inference time for detecting the active speaker compared
to state-of-the-art results, achieving an 85% reduction in
inference time—from 1.3 seconds to (.2 seconds to process
1 second of video at 30 fps [8].

The novel contributions of this work are as follows. First,
we developed an human-motion modeling pipeline on a Nao
humanoid robot to generate natural head movement while
detecting active speakers in a group conversation setting.
We note that our proposed pipeline can also be deployed
in different humanoid robots, such as the iCub or Pepper, to
mention a few. Second, we present an extensive analysis of a
proof-of-concept case study on an active-speaker interaction
task. Lastly, we provide a new dataset of human head-gaze
motion together with the trained models and benchmarked
results.

II. RELATED WORK

Although generative modeling of human motion is an
active research area in robotics [3], [5], [6], its use for
imitating head movements remains limited. For example,
Grassi et al. [9] developed predefined control policies for
the Pepper robot in a group conversation setting. The authors
showed that the balanced attention provided by the Pepper
robot enhances conversational dynamics and reduces the
likelihood of subgroup formation among the participants.
Similarly, Barot et al. employed a REEM-C humanoid robot
to interact with multiple participants to detect active speakers
via their head movements using multimodal data. In addition
to quantitative results, the authors provided a human subject
study with 5 participants to assess interaction along three
dimensions: naturalness, accuracy, and responsiveness [1].

Within the context of Active-Speaker Detection (ASD),
previous studies have mostly focused on offline datasets
as benchmarks, such as the Columbia ASD dataset [10]
and the AVA Active Speaker dataset [11], rather than real-
time use on social robots. For example, Liao et al. [§]
implemented an end-to-end deep learning architecture that
outperforms different models, as evaluated using these two
datasets. Jung et al. [12] proposed an active speaker detection
model, TalkNCE, using contrastive learning with audiovi-
sual data that achieves state-of-the-art results on the AVA-
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Schematics of the proposed method for generating head-gaze movements from human motion data (methods III-A), along with the example

application to an active-speaker gazing task. The models are obtained by first training a variational autoencoder to model human motion data (methods
III-B). Next, a multilayer perceptron (MLP) is trained to map end fixation points of the training trajectories into the corresponding latent vectors z learned by
the encoder (methods III-C). The system can then be used by first converting desired fixation points into latent vectors, which are subsequently transformed
into motion trajectories by the VAE decoder. In the active-speaker fixation task (methods III-D), audiovisual input from a camera mounted on the head of
a Nao robot is inputted to the Light-ASD [8] active-speaker recognition module to retrieve bounding boxes of faces together with a confidence score for
each possible speaker. Fixations are then decided by sampling a softmax distribution of the confidence scores.

ActiveSpeaker dataset. Alcazar et al. [13] introduced an
end-to-end network incorporating interleaved graph neural
network blocks to aggregate spatio-temporal context using
the AVA-ActiveSpeaker dataset. The above studies on active
speaker detection utilize existing datasets. However, only a
few studies were aimed at real-time active-speaker detection
and they focused on hardware or voice localization [14], [15].
Our work differs from previous work in the following way.
First, unlike the head movement studies introduced above,
we follow a generative modeling approach to produce natural
head movement for a Nao robot in a human-robot interaction
setting. Second, our active-speaker detection pipeline was
deployed on a Nao robot to achieve real-time active speaker
detection in group conversation experiments. Lastly, we
conducted experiments in a realistic real-world setting where
environmental noises and hardware constraints need to be
considered and can affect the system’s performance.

III. METHODS

Modeling of human motion is achieved by first training
a variational autoencoder (VAE) to learn the distribution
of motion trajectories via unsupervised learning. Next, a
multilayer perceptron (MLP) is trained to map end fixation
points of the training trajectories into corresponding latent
vectors learned by the VAE encoder. Evaluation of the
generated motions is performed in an active-speaker gazing
task, where target fixations are determined using a pre-
trained active-speaker recognition model (Light-ASD [8]).
The overall system integration is shown in Fig. 1.

A. Head motion data collection

We designed an experimental protocol to collect head
movement data covering a large range of motion. A single

participant wore a GoPro Hero 11 sports camera mounted
on a head strap and positioned close to the eyes. During
the experiment, data were collected from both the camera
(not used in this study) in a linear lens mode at a resolution
of 2.7K with a 4:3 aspect ratio, and from the inertial
measurement unit (IMU) built into the camera. Data from
both the camera and the IMU were sampled at 30 frames
per second.

Fig. 2. Overview of the setup used to collect head movement trajectories
(Section III-A). A single participant is asked to produce head-gaze move-
ments between pairs of points organized as three uniform 3 x 3 grids of
points.

The setup consisted of a table next to a wall, on top
of whose were positioned three sets of evenly distributed
3x3 reference points to cover the visual field of the test
subject. The setup is shown in Figure 2. The first set covers
a standard range directly in front of the subject, the second
set spans a smaller range also in front, and the third set is
positioned horizontally on the table. These arrangements of
reference sets are designed to cover the majority of typical



head movements. The distances between the reference points
were determined based on the maximum rotation of the
human head’s yaw and pitch movements, as documented by
Gilman et al. [16]. The smaller frontal range spans a range
approximately half of the main one to imitate small and
frequent head movement that often happens during human-
robot interaction.

To ensure comprehensive spatial coverage, the participant
was asked to systematically move through every possible
combination of starting and ending points across each 3x3
grid, marking the beginning and end of each motion by
pressing a button. To prevent any bias related to the relative
positioning of the head and camera, all data is collected in
a single session lasting approximately 30 minutes. During
data collection, the participant was instructed to minimize
the gaze movement as the Nao robot has no eye movement
abilities. However, this setting is not necessarily different
from human head motion during group conversation, since
head movement is used by humans to optimize listening to
the active speaker [17].
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Fig. 3.  Full set of the 174 human head-motion trajectories collected.
Trajectories consist of the yaw and pitch of the head during movement,
relative to the initial pose (i.e., 7(t) = (yaw(¢), pitch(¢)), 7(0) = (0,0).)

Since the camera gyroscope records the absolute yaw
and pitch angles of the head, we obtained a dataset of
general head motions by subtracting the initial pose from
each recorded trajectory. Figure 3 shows the full set of
recorded trajectories.The dataset collected in this study is
made available at our public repository’.

B. Head trajectory modelling

We took an approach similar to previous work on motion-
capture trajectory modeling [2]-[4], and chose to model
human head-movement trajectories using a variational au-
toencoder (VAE) [18]. Full architecture and hyperparameters
are included in Appendix A.

We extracted individual trajectories from each trial in the
training set by automatically identifying their beginning and
end. The start of a fixation trajectory is detected by finding
the first timestep where the magnitude of change |AT| is
above a threshold of 0.1, then subtracting a fixed offset of

Thttps://github.com/dingdingding60/Humanoids2024-HeadImitation

4 frames. We used a sliding window of 20 frames to detect
the end of each trajectory to eliminate small noise at the
end of fixations. A fixation is marked to have ended once
all the magnitudes within this window are less than 0.0175.
Trajectories are then padded with trailing zeros until a fixed
length of 60 frames (i.e., 2 seconds).

Trajectories 7(t) = (yaw(t), pitch(t)) are represented as
yaw and pitch angle of the head at each frame, relative
to the initial pose (i.e., 7(0) = (0,0) for every clip). We
also approximate angular velocities at each frame by finite
differences over the trajectory (A7(t) = 7(¢t) — 7(t — 1),
where we assume A7(0) = (0,0)). An example of the
trajectory of angular velocities A7 is shown in Figure 1,
as ‘fixation trajectory’, and in the Appendix as Figure 8.

A variational autoencoder is composed of two neural
networks, an encoder z,, z, = enc(AT) that takes a
trajectory of angular velocities as input and outputs two
vectors, that parameterize a multivariate Normal distribution
N (z,,diag(z,)), and a decoder dec(z) that takes a latent
vector z sampled from the distribution proposed by the
encoder, and outputs a reconstructed trajectory (as per-frame
angular velocities) 7 that is as similar as possible to the
original trajectory.

We design a loss function that aims at reconstructing tra-
jectories by matching both absolute (yaw, pitch) coordinates
of the trajectory at each frame and the instantaneous angular
velocities. The loss function used is

Lvag = % Xt: |AT(t) — AT ()% +Apos % Xt: |7 (t) — 7(t)||?

velocity loss

+ /\KL KL (N(Z/u diag(za))”N(O7 I))

position loss

where T = dec(enc(T)) is a reconstructed trajectory, N =
60 is the length of each trajectory in frames, Apos = 5 -
10~* is a trade-off term between the MSE loss of absolute
angles and the MSE loss of the per-frame angular velocities,
and Ag;, = 5- 1073 is the relative strength of the VAE
regularization term versus the reconstruction losses. We use
a latent space of size 10, z € R10,

C. Generation of target trajectories

The VAE is trained via unsupervised learning to match the
distribution of human trajectories. To be useful in practical
applications, however, we need a way to generate trajectories
with desired properties. We are in particular interested in
generating trajectories whose end point is at or close to a
given target location. For example, if we wished to produce
a fixation to a target (yaw, pitch) = (—60°,20°), we would
like to generate a trajectory similar to the pink one in the top-
left corner of Figure 3. Note that all trajectories are relative to
the current fixation, given by an initial yaw and pitch angle.

We generate trajectories to given targets as follows. We
process the dataset to calculate the end (yaw, pitch) fixation
point for each clip of human trajectories. We then scale
the fixation points by constant factors to approximately



normalize the coordinates within [—1,1] (we use factors
Qyaw = 35, and Qpiten = 35). We then train a multilayer
perceptron (MLP) to map the normalized fixation targets
into latent vectors z obtained by inputting the corresponding
trajectories into the trained VAE encoder. We provide Full
architecture and hyperparameters in Appendix A.

At test time, trajectories can be generated by appropriately
scaling target fixation points, inputting them into the MLP to
obtain latent vectors that characterize the required motions,
and then using the VAE decoder to produce the desired
trajectories.

D. Case study: active-speaker gazing task

We design a human-robot interaction scenario that involves
the generation of repeated head movements to investigate
the quality and naturality of the movements provided by
our method, compared to a baseline where yaw/pitch head
movements were driven by the default motion controller of
the Nao robot. Due to the limitations of the narrow viewing
angle (approximately 60° horizontally) of the built-in camera
and the need for wider visibility to effectively interact with
multiple participants, we attached a Logitech webcam ( 90°
field of view horizontally) to the top of Nao’s head with a
3D-printed head mount based on Dhionis Sako’s”~ project.

We chose an Active Speaker Detection (ASD) task that
involves identifying the active speaker in a group conversa-
tion with multiple potential speakers, in which the robot is
a passive participant. The objective of ASD is to determine
a function f of an audio A(t) and visual V'(t) data stream

S(t) = f(A(1), V(1)) (D

such that S(¢) € {0,1}¥ is a vector whose components
at each timestep t are S;(¢t) = 1 if speaker ¢ € {1,..., N}
is active and O if it is not active.

Here, we use the pre-trained Light-ASD model from
Liao et al. [8]° to implement the function S(¢). First, we
detect bounding boxes for all faces seen by the Nao’s
camera in each frame. The detected faces are resized and
organized into candidate speaker tracks using temporal In-
tersection Over Union (IOU) scores. For each candidate
speaker, the sequence of face images and corresponding
audio (shared across all speaker tracks) are processed inde-
pendently through audio and visual encoders. The resulting
audio and visual features are then concatenated. The com-
bined feature vectors are then processed sequentially through
a bidirectional Gated Recurrent Unit (GRU), followed by a
multilayer perceptron.

Although Light-ASD is significantly faster than other
state-of-the-art ASD models, we found it to still be too slow
for use in real-time applications. This is likely due to the
model having been developed primarily for offline processing
of video files. As part of this work, we optimized the model
by improving the preprocessing code to run in-memory and
replacing the original face detection model with the faster

Zhttps://github.com/costashatz/nao_dcm
3https://github.com/Junhua-Liao/Light-ASD

MediaPipe [19]. The combined modifications resulted in
an 85% reduction in overall inference time, decreasing the
time required to process a ls (at 30fps) video clip from
1.3 seconds to approximately 0.2 seconds. Furthermore, we
designed an asynchronous system to record and process the
robot’s inputs in parallel, achieving close to 5 inferences per
second. During interactions with humans, camera frames and
audio chunks are stored in a First-In First-Out (FIFO) buffer
that holds the most recent 1s of data. Every 0.5 seconds,
the current buffer is asynchronously processed by the ASD
model.

We finally implement a simple heuristic to select fixation
targets as follows. Each time a new result is processed by
the ASD module, we calculate a probability distribution by
applying a softmax operator on the vector of scores assigned
by the ASD module to each face in the last frame of the
buffer, with a weighting factor 5 = 2. Then, a new fixation is
chosen as the center of the bounding box of the face sampled
from the distribution. A motion trajectory is generated and
executed only if the previous movement has already finished.

E. Preliminary experiment on human preferences

We further test the subjective perception of the quality
and naturalness of the generated motions by designing a
preliminary experiment with, n = 9, human participants.
For the experiment, we collected 3 videos centered on the
Nao’s head for both our method and a baseline motion
controller. We then asked the participants to select 3 out of
6 videos with the following instructions: “Choose 3 out of
the 6 videos that in your opinion show the most natural and
engaging movement of the Nao robot. Please note that head
movements (i.e., target fixation points) were chosen using
the same algorithm in all videos.”

IV. RESULTS

We evaluate the results of our approach in two stages.
First, we look into the quality of the individual components
to assess the quality of the generated head movement trajec-
tories. We then evaluate the integrated system in a case study
where a Nao robot needs to track a conversation between
human co-participants.

A. Trajectory modelling and generation

We first performed a qualitative analysis of the VAE by
generating 200 random trajectories (i.e., sampling random
latent vectors to input into the trained decoder) and com-
paring them to the trajectories of human head movement
from the dataset we collected (see Figure 3). The generated
trajectories are shown in Figure 4 (a). A sample of individual
trajectories reconstructed by the autoencoder is available in
the Appendix as Figures 7 and 8.

We next evaluated whether trajectories to specific target
fixations could be effectively generated using the trained
MLP from Section III-C. We did so by selecting 21 x 21
(normalized) target fixation points within a uniform grid
[-1,1] x [-1,1], and generating trajectories to reach each
of them. We then looked at the final fixation points reached
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Fig. 4. Analysis of the capabilities of the proposed method to synthesize realistic head-gaze movements. (a) We generate and plot 200 random trajectories
by sampling latent vectors from the VAE prior distribution z ~ A(0, I), and compare them to the human motion data from Figure 3. (b) We evaluate
the capacity of the system to generate desired head-motion trajectories to look at target points. To do so, we select a set of 21 x 21 target fixations on a
grid [—1,1] x [—1, 1] (normalized yaw/pitch coordinates), and generate trajectories to reach each of them. The final fixation point for each trajectory is
shown as a distortion grid. The MSE in original coordinates is approximately 3.7 degrees. (c) A subset of 5 x 5 fixation points on the same grid (colored
in red in the middle panel) is selected to show the individual trajectories generated to reach each target. Trajectories are divided into segments (alternating

in red and blue color) to show the angular velocities in the yaw and pitch directions at each timestep.
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Fig. 5. Example of head movements on a Nao robot using our proposed method versus the default controller. (a-b) Initial and final pictures during a Nao
fixation movement. (c) We track the red marker on Nao’s nose (in pixel coordinates) during the fixation movement, using our method versus the default
controller. (d-e) We report encoder readings from the Nao’s head showing the robot’s yaw and pitch angles while moving to a target configuration (d) or

executing a trajectory (‘target’) generated using our proposed method.

by the predicted trajectories, and plotted them as a distortion
grid in Figure 4 (b). We found that the generated trajectories
always reached the desired fixation point, with a mean square
error of approximately 3.7°. We also found that the generated
trajectories match the profile of angular velocities from the
human data, as shown in Figure 4 (c), which plots a sub-
set of the trajectories and highlights the change in relative
position at each timestep by alternating segments of different
color. We also observed that even though the original dataset
contained only few trajectories toward the four corners,
our generative model managed to interpolate correctly and
cover the whole range of possible fixation points accurately,

suggesting that the model did not simply memorize the
training trajectories, but rather managed to generalize well.

B. Case study: active-speaker gazing task

We evaluated the quality of the generated motions on a
Nao robot during an active-speaker gazing task in two steps.

We first determined that the target trajectories generated
using our method are effectively tracked by the robot motors,
and that they are qualitatively different from a baseline where
movements are obtained using the default Nao controller. We
collected data in a group conversation setting by letting the
robot passively participate in a conversation between three
human interlocutors. During the conversations, we recorded



videos centered on the robot’s head together with the target
trajectories generated with both methods and the joint angles
as measured using the robot’s encoders. We further extracted
the movement of the head in the videos by tracking a red
dot painted in the middle of the robot’s face.

Figure 5 shows the results of this analysis. We found
that the generated trajectories are significantly different from
those generated by the baseline (panels (c), (d), and (e)),
which we found to track the yaw and pitch movements
independently of each other, so that in practice the pitch
movement of the robot in the baseline terminates before the
yaw movement, resulting in unnatural-looking motions.

We further tested the subjective perception of the quality
and naturalness of the generated motions by designing a
preliminary experiment with n = 9 human participants.
Results are shown in Figure 6 as a histogram with the number
of times each video was selected as within the top half
of best-looking motions. Videos 1, 3, and 4 (blue) were
generated using our method, and videos 2, 5, and 6 (red) used
the default controller. We found that videos that used our
method were chosen on average by 6.33 out of 9 participants,
while videos with the default controller were only chosen on
average by 2.67 participants.

BN ours
mm default

number of choices

2

5

3 4
video number

Fig. 6. Results from an experiment to assess human preferences for
head motion generated using the proposed method versus a baseline default
motion controller. Videos 1, 3, and 4 (blue bars) showed motion using our
controller, while videos 2, 5, and 6 (red bars) were made using the baseline
controller. Participants were asked to choose the 3 out of 6 videos that
in their opinion showed the best looking and most natural movements. The
histogram shows the total count of votes received for each video, suggesting
that motion generated by our method is generally preferred (6.33/9) over
the default motion controller (2.67/9).

V. DISCUSSION AND CONCLUSIONS

In this paper, we have addressed an often overlooked
problem in human-robot interaction: imitating human head
movements to track active speakers in a group conversation.
Specifically, we addressed this problem by demonstrating
how human data can be effectively used to generate head
movements for a Nao robot by showing the efficacy of our
motion controller in an active-speaker tracking task. The
results indicate that the robot can move its head toward active
speakers with natural-looking, well coordinated movements.

We suggest that this study could be further extended in the
following ways. On the one hand, the same approach can be
applied to upper body imitation for generating nonverbal cues
(e.g., pointing, nodding, fidgeting) during the human-robot

interaction, or to model more complex head movements with
the inclusion of ‘roll’ motion in addition to the current ‘yaw’
and ‘pitch’. On the other hand, the method could be improved
by training the whole system end-to-end to generate target
trajectories directly from multimodal inputs, in an imitation
learning setting.
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APPENDIX
A. Supplementary Materials
We include the full set of hyperparameters used for train-
ing the variational autoencoder in Table I (see Section III-B),
and the set of hyperparameters of the multilayer perceptron

used to map target fixations into latent vectors in Table II
(see Section III-C).

TABLE I
VAE HYPERPARAMETERS FOR TRAJECTORY MODELING

Parameter Value
z-length 10
Epochs 500
Architecture MLP with ReLU, 2 hidden layers [128, 128]
Decoder Architecture ~ MLP with ReLU, 2 hidden layers [128, 128]
Batch Size 16
Optimizer Adam
Learning Rate 0.001
Betas (0.9, 0.999)
TABLE II
HYPERPARAMETERS FOR FIXATION TO LATENT MLP IN TRAJECTORY
GENERATION
Parameter Value
Architecture MLP, 2 hidden layers [64, 64], output size z-length=10
Epochs 500
Optimizer Adam
Learning Rate 0.001
Batch Processing Full-batch

B. Supplementary Results

We include a set of 16 trajectories from the training set
together with their corresponding reconstructed trajectories
using the trained variational autoencoder. Results are shown
in Figure 7 as trajectories in (yaw, pitch) space, and in Figure
8 as instantaneous angular velocities.
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Fig. 7. Selection of 16 trajectories from the training set (dashed lines), together with their VAE-reconstruction (solid lines).
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Fig. 8. Selection of 16 trajectories from the training set (dashed lines), together with their VAE-reconstruction (solid lines). Blue denotes yaw, and orange
pitch. Trajectories are plotted as instantaneous velocities over time.



